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Symmetric functions and the KP and BKP hierarchies 
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Department of Physics, University of Tasmania, GPO Box 252C H O W  Aushalia 7001 

Received 21 May 1993, in final form 19 July 1993 

Abstract We study the KP hierarchy through its relationship with S-functions. Using results 
from the classical theory of symmetric functions, the Pliicker equations for the hierarchy are 
derived from the tau function bilinear identity and are given in terms of composite S-functions. 
Their connection to the Himla bilinear form of the hierarchy is clariEed. A novel combinatorial 
proof is given of the fact that Schur polynomials solve the KP hierarchy. We show how the 
analysis can be Carried through for the BKP hierarchy in a completely parallel fashion, with h e  
S-functions replaced by Schur p-functions. 

1. Introduction 

Vertex operators have come to play an important role in various areas of mathematics and 
physics [I], including conformal field theory, integrable hierarchies and the representation 
theory of Kac-Moody algebras. In [Z, 31 a realization of untwisted vertex operators as 
operations on Schur functions (S-functions) was presented. It was shown how classical 
results from the theory of symmetric functions can be effectively used to calculate quantities 
like matrix elements and traces of products of vertex operators, with results succintly 
expressed in terms of composite Schur and supersymmetric Schur functions. In this paper, 
we explore the implications of this realization of vertex operators for integrable systems of 
the Kp (Kadomtsev-Petviashvili) type [4]. 

Schur polynomials are known to solve the Kp hierarchy [SI. It thus makes Sense 
to study the Kp hierarchy from a point of view which stresses this property. It will be 
seen that our novel approach has its benefits, not the least of which is a straightfonuard 
generalization to the Bw hierarchy [6] with the role of S-functions played by Schur Q- 
functions, Schur Q-polynomials being solutions to the BKP hierarchy [7, 81. Our treatment 
starts from the tau function bilinear identity (or group-orbit equation) which traditionally 
leads to the formulation of the hierarchy in Hirota bilinear form. However we take a 
different route, through a change of variables which effectively implements the Schur 
function realization of the vertex operators which define the infinite dimensional algebra 
underlying the hierarchy. Through a sequence of simple manipulations of the S-functions, 
we convert the bilinear identity to a set of Plucker equations (which are central to the infinite 
dimensional Grassmannian approach to the KP hierarchy [5]) .  Our version of the Plucker 
equations is formulated in terms of composite S-functions and turns out to be slightly 
different to the Sat0 version quoted in [4]. The fact that Schur polynomials solve the KP 
hierarchy is related to a property of composite S-functions (of a single variable), which we 
prove in appendix A. We show how the Plucker equations can be converted into bilinear 
P D U  for the tau function and how these PDES are related to the Hirota bilinear form of the 
hierarchy. We also clarify (in appendix B) the relationship between Hirota derivatives and 
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5906 P D Jarvis and C M Yung 

supersymmetric polynomials. Finally we show how to obtain the well known N-soliton 
solutions in our language. This is all done in section 2. The completely parallel treatment 
of the BKP hierarchy is done in section 3. 

2. The KP hierarchy and S-functions 

2.1. Review of ihe KP hierarchy in Hirota bilinear form 

The KP hierarchy [5 ]  is an important integrable system, whose reductions include the famous 
KdV and Boussinesq hierarchies, and is usually formulated in the Lax form 

where L = a + CEI uia-' (a = $/axl) and P+ denotes the differential operator part of. 
a pseudodifferential operator P .  Through a dressing transformation L = WaW-I, with 
W = I + E;"=, wia-' one arrives at the equivalent Sato form of the hierarchy 

where B, = (Ln)+. The system (2.1) is also equivalent to the linear system 

aw az 
ax, ax. 

Lw =zw -= B. w - = o .  

Up to a function of the spectral parameter z, the wavefunction w(x,z) is given by 
w(x, z) = W exp(xxkzk)  and yet another equivalent form of the hierarchy is the 'bilinear 
identity' 

f&w(xJ)w*(Y.z) = o  (2.2) 

where w*(x, z) = W* exp(Cxkzk) is the adjoint wavefunction with W' being the formal 
adjoint of W. Finally. given a wavefunction w(x, z). a tau function can be obtained as 

resulting in the tau function form of the hierarchy 

Alternatively, equation (2.3) can be interpreted 191 as the condition that r must satisfy 
if it lies in the GL(m)-orbit of the vacuum vector in a vertex representation of a, on 
@.[XI, x2, . . .I. The exponential factors in (2.3) come from bosonization of the fermions, 
normal-ordered bilinears of which generate Q,. For a review, see [4] or [lo]. This group 
orbit interpretation of the KP hierarchy can be canied over to many other integrable systems. 
In fact, one can start with a given vertex representation of an infinite dimensional algebra 
and construct a corresponding hierarchy [ 1 I]. Integrability of many of these hierarchies has 
now been established by virtue of the existence of Lax representations [12]. 
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The change of variables x + x - y .  y + x + y leads directly to the Himta bilinear 
form of the hierarchy (or generating functions for the Hirota equations)t 

where Sm are elementary Schur polynomials whose generating function is 

D D D  D = (t, 2, +, . . .) and Dk is a Himta derivative defined by 

for any polynomial P. Our analysis of the KP hierarchy begins with (2.3). 

2.2. Review of symmetricfunctions 

(2.4) 

We recall here various properties of symmetric functions [14]. Given a partition A = 
(AI ,  Az, . . . , A.) of p.1 = A; into I(A) 5 n paits with A I  > A2 > . . . > An, the 
S-function si(x) of an infinite number of indeterminates x = (XI, x2, . . .) is defined as 

 SA(^) = det(hi,-i+j(x)) 

with h,(x) being complete symmenic functions whose generating function is 

The set of S-functions s ~ ( x )  where A runs over all partitions forms an integral basis for 
the ring A of symmetric functions of x with integer coefficients. An inner product can be 
defined on A such that the S-functions are orthonormal: (SA, s,,) = 82,. Another important 
orthogonal basis is provided by the power sum symmetric functions p i  p i ,  pi2 . . . p in  
where p m ( x )  has the generating function 

With respect to the same inner product, we have {pi, p,,) = zASi,, where zi = nrg, Pm;! 
with m; = m;(A) being the number of parts of A equal to i .  Let D(f) for any symmetric 
function f denote the adjoint of multiplication by f. Then there is the result [I41 

The operations in A of multiplication by pm and its adjoint therefore provides a realization 
of the Heisenberg algebra. This simple observation together with the observation that certain 
vertex operators in this realization are 'simplest' in the S-function basis was the starting 

t Closed form expressions for the Himta polynomials for the KP and other hierarchies on be obtained using 
symmevic function techniques [131. 
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point of the works [2, 31. The relation between the S-functions and the power sums is most 
easily seen via the following S-function series: 

P D Jarvis and C M Yung 

which together with (2.5) implies 

Further on, we will make use of another S-function series 

with A' denoting the transpose of h. 

S-function multiplication is given by 
We summarize here various S-function properties which ak useful later on. Firstly, 

with the coefficients ciu determined by the Littlewood-Richardson rule. Skew S-functions 
are defined as 

(2.11) 

or, equivalently, s ~ / ~ ( x )  = D(sp(x))sn(x).  In particular SA/&) = S A ( X )  and s+(x) 
is non-zero only if the Young diagram corresponding to the partition /L lies within 
that corresponding to A. If the compound argument ( x .  y) denotes the set of variables 
(XI, nz, . . . , y t .  y z ,  . . .), then we have the relation 

In working with vertex operators in the Schur function realization, supersymmetric S- 
functions and composite S-functions naturally appear. Supersymmetric S-functions in the 
variables x and y are defined by 

SA ( x  / Y )  = E(- 1 )'"sA/p ( X ) ~ ! L '  (y) (2.12) 

and obey the same rule (2.10) with the argument x replaced by the supersymmetric argument 
x / y .  Composite S-functions are defined by 

P 

Both these S-functions play important roles in the Young diagrammatic approach to Lie 
(super) algebra representation theory. The characters for representations of s l (n) ,  whose 
highest weight vectors are labelled by partitions, are precisely given by S-functions. 
Composite S-functions provide an alternative set, and in the case of g l ( n )  are associated 
with more general representations. For a review, we refer the reader to [15]. 
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2.3. From the bilinear identity to Pliicker equations 

It is a key result of the KP theory that Schur polynomials SA(X),  defined by 

S A ( x )  = det (Sh- i+i (x) )  

solve the KP hierarchy [5]. These Schur polynomials are related to the S-functions by 
& ( x )  = sA(u) where xk = i p k ( u )  with u = (U,, u 2 , .  . .) etc. Note that the ‘S’ for Schur 
polynomials is capitalized as opposed to the ‘s’ for S-functions. The change of variables 

xk = i p k f u )  Y k  = i?’k(u) (2.14) 

is hence a very natural one to make on the bilinear identity (2.3) itself. Due to (2.6) this 
change of variables is accompanied by 

Here we have used D to signify adjoint with respect to the innei products on two different 
spaces but this should cause no confusion. Together with the device of ‘promoting’ z to a 
multivariable z = (q,q, . . .) where eventually we will set .q = z ,  0 = zz = z3 = . . ., the 
bilinear fdentity (2.3) becomes 

By an abuse of notation, r is now to be considered as a function of U - a symmetric function, 
in fact. Using (2.8) and the corresponding relation which follows from (2.9). we obtain 

(2.15) 

This can be written in a more compact form in terms of supersymmetric S-functions 

Since r (u)  is a symmetric function, it  can be written as a linear combination of S- 
functions 

(2.16) 

In terms of the original Kp variables xk this is equivalent to r (x)  = CA aA&(x). We now 
proceed to reduce the condition (2.15) for r to be a solution of the KP hierarchy to algebraic 
equations for ah. The method is essentially that used in [2, 31 to calculate vertex operator 
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matrix elements in the S-function basis. By the definition of skew S-functions we rewrite 
(2.15) with T given by (2.16) as 

P D Jarvis and C M Yung 

By using (211) to expand out the skew S-functions of U and U, then (2.10) to multiply 
together the S-functions of U and U, and finally (2.1 1) again to resum in favour of skew 
S-functions of z and z-’  we obtain 

The terms in z and 2-l can be recognized as precisely the combinations used to define the 
composite S-functions (2.13). This, together with the projecting out of the S-functions in 
U and U leads us to the Plucker equations 

(2.17) 

(2.18) 

which must be satisfied for all (Y and ,9 if (2.16) is to solve the KP hierarchy. 
We recall that z is such that zz = 23 = ... = 0. S-functions of a single variable 

are simple: S.I(Z) is non-zero only if A is a one-part partition and stm)(z) = h,(z), a 
complete symmetric function. Similarly, skew S-functions of a single variable are easy to 
calculate [ 141: sAIU(z) is non-zero only if the skew diagram h - CL is a ’horizontal strip’- 
i.e. if Ai - ki < 1 for all i-in which case sAIIL(z) = ZI*~-I@I. The composite S-functions 
appearing in (2.17) can thus be calculated explicitly. The integral in (2.17) also poses 
no problems. By explicit calculation of the composite S-functions, the non-trivial Plucker 
equations for all OL and ,9 with \a\ + IB\ < 5 are given byt 

a10)a(2,2) + a11.1)a(21 - a(2.1)a(1) = 0 

a(0)a(3,2J + all.l) a (31 - a(3 ,1)a(1)  = 0 
a(Ol~12.2,1) + a11.1,1Ja<21 - a~2,1,11a~ll = 0 
a(0)at4,2) + a(1.1)a(41 -a(4,11a(l) = 0 
a(0)a(3,31 + a12,1Ja(3J - a(3,11a(21 = 0 
a(0)a(3.2.11 +a(l.l.lJ a (3) -ai3,1,1)a(l) = 0 
a(o)a(2.2.1.1) +a~l,l.l,l)a~2) -a(2.1.1.11ai11 = o  
a(0)a(2,Z.2J + a~1.1.1)a~2t1) - a(21.1)a(l.lJ = 0 , 

Alternatively, s;+(z) is the character of the gl(1) representation labelled by the composite 
Young diagram {C; /L] and there exists sophisticated ‘modification tules’ to calculate it. 
These calculations have in fact been automated in the program S c m  [ 171. Our claim that 
these are the Plucker equations for the KP hierarchy is based on a comparison with the first 
few Plucker equations of Sato, quoted in [4]. There the general Plucker equation has strictly 
three terms each with coefficient +I. As shown in appendix A, the Plucker equations in our 
form (2.17) can have more than three terms (for a, B of high enough weight). Presumably 
the two forms for the Plucker equations correspond to choosing different bases. 

in the Plucker equations is due to the fact that 
Schur polynomials solve the KP hierarchy [5 ] .  In other words, for any given L, am = BrrA is 
a solution to (2.17). In appendix A we provide a proof of this fact. 

t These were obtained with a program mitten in Malhematica [16]. 

Note that the lack of quadratic terms 
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One can in fact obtain bilinear equations in r (x)  of similar form to the Plucker equations. 
For suppose r is a function of the compound argument (U, tu). Then we have an expansion 
T ( U ,  w )  = CaaUs, (u ,  w) ,  which on using (213) becomes 

T(U, w )  = ~ a u s , / ~ ( U ) s ~ ( w )  . 
a 

Now. one can carry through the analysis leading to the Plucker equations as before but now 
with r(u,  w )  thought of as a function of w,  with the result that &U) = C B a n s m , ~ ( u )  
satisfies the same set of equations (2.17). But there is the result 

aP(u) = S&)r(x) (2.19) 

with 3 = ( t a x , ,  fax2 ,  . . .), which means that every Plucker equation has a bilinear PDE 
equivalent. To prove (2.20), we note that since d ( u )  = D(s&))r(u), it has a generating 
function 

= C s p ( r ) s p ( Y ) t ( u )  
B 

for a fictitious set of variables ym = ;a/ap,(u). On making the transformation (2.14) back 
to the usual KP variables, (2.20) follows. Altematively, (2.20) can be derived by making 
use of the Frobenius formula 

S p ( f )  = Cz; 'x!P*(r)  (2.20) 
i 

where xi is a symmetric group character, and the relation (2.6). 
Corresponding to the first equation of (2.19) we have 

(s(m (5) r W) (s(z.2, (3)r W) + (3) r G)) ( ~ ' 1 .  I )  (3)r W) 

- (so,l)(g)r(x)) (s,l,(3)r(x)) = 0. 

When the Schur polynomials are evaluated it can be seen that this equation is the same as 
(4&& - Df - 3Dg)r. r = 0 

the Hirota bilinear form of the KP equation. The bilinear equivalent of the next two equations 
of (2.19) cannot be written in Hirota bilinear form separately since each contains the term 
r ( a 2 , T )  whereas the Hirota bilinear operator 0: is trivial as are all odd P ( D ) .  However, 
their difference yields the second equation of the KP hierarchy 

(D:& - 3 0 1 0 4  + 2D&)r. r = 0. 

As shown in appendix B, a Hirota term of the form D A ( r . t ) ,  where. DA = Di,DA,. . . Dh8 
for a partition A = (AI ,  . . . ,An) ,  can be written as a bilinear PDE 
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in which the role of supersymmetric S-functions is manifest. The Hmta bilinear equations 
arising from the generating function (24) are then equivalent to linear combinations of 
such symmetrized bilinear PDEs. Since both (2.4) and the Pliicker equations (2.17) are 
consequences of the bilinear identity (2.3), we expect that linear combinations of the Pliicker 
equations can be found to yield the symmetrized bilinear PDEs which correspond to the Hirota 
bilinear equations. 

2.4. Soliton and other solutions 

The vertex operator [91 r(a, b) = exp(xj(aj - bj)xj)exp(- xj((a-j - b-j)/j)@/axj)) 
defines the vertex representation of a, on @[xI, XZ, . .,] which underlies the KP hierarchy. 
Exponentiating elements of a, we get elements of GL(oo)  and, since the KP hierarchy is 
the GL(oo)-orbit, their action on solutions of the KP hierarchy yield new solutions. Now, 
we already know that any Schur polynomial is a solution. The action on them by products 
of exponentials of r ( a ,  b) is particularly interesting. Such operators can be written as 

nexp(c;r(ai.b;)) = n ( l + c i ~ ( a i , ~ )  
i i 

since T(a, b)* = 0. 

b = (bl ,  bz, . . .) we rewrite r ( a ,  b) as 
By the transformation xt + ipb(u) and promoting a and b to a = (a,, az, . . ,) and 

(2.21) 

and its action on an S-function is given by 

More generally, we have 
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where e,(x) is the elementary symmetric function e,(x) = C14i,c...4nGN~i, . . 'xi". Hence 
the action of a product of exponentials of r(ai, bi) on an S-function is 

N N 

n ( l  + cir(ai, b;))s,(u) = (-1)la' 
i d  n=O Igi,c-<i.<N 

C C. 'I ... C in 

(2.23) 

which solves the KP hierarchy once the transformation back to the KP variables xx is made. 
The special case a = 0 corresponds to the famous N-soliton solution, for then we have 

n (1 +uil-(ui, b,)) . 1 = 
i=l n=O I<it+..ci.<N 

N N 

ci, ..'cia 

3. The BKP hierarchy and Q-functions 

3.1. Preliminaries 

The BKP is a w-like hierarchy where instead of a,, the underlying infinite dimensional 
algebra is b,. It admits a Lax representation of the type (2.1) with an extra condition 
L = -3- 'L*a on the Lax operator L, at the expense of freezing out the variables XZ, x4,. . . 
The wavefunction in this case satisfies the bilinear identity [6] 

-w(x,z)u)(y, -2) = 1 2niz 

One can consistently set 

resulting in the tau function bilinear identity 

which can be interpreted as the O(oo)-orbit equation for the vacuum vector in a vertex 
representation of b, on cC[x,, x3, . . .]. 

For the BKP hierarchy, the relevant set of symmetric functions tums out to be the 
Schur Q-functions, first introduced in the context of projective representations of symmetric 
groups. They form a basis for the ring r of symmetric functions spanned by the power 
sums p,(x) for odd m. One definition of Q-functions is the following [14]: 
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where q A ( x )  = qrl (x)qA,(x). . . q& (x) and the generating function for qm(x)  is 

P D Jarvis and C M Yung 

The Young operators Rjt act on I-tuples, adding 1 to the jth component and subtracting I 
from the kth component. Its action on qA is R,&qA = qRlr(A). So, for instance 

Note that the S-functions can be similarly defined 

i < j  

There are two other equivalent definitions of Schur Q-functions. See for instance [181. The 
definition (3.2) is the one which generalizes to Hall-Littlewood symmetric functions. 

The Q-functions are non-zero only if A belongs to the set DP of partitions with all 
parts distinct. By definition, Q A ( ~ )  is homogeneous in xi with degree Ihl. The Q-functions 
satisfy a relation analogous to (2.7), namely 

with bA = 2'('). Using (2.5) it can be shown that the relation 

also holds. This provides the desired link between Q-functions and odd power sums 

(3.3) 

(3.4) 

There exists an inner product with respect to which the Q-functions are orthogonal: 

( Q A ( ~ ) ,  Qp(X))  = bA&, . (3.6) 

This inner product in fact differs from the previous inner product for the S-functions by a 
factor of 2. In particular, we now have 

(3.7) 

Q-function multiplication is given by QA(x)Q,(x) = CvEDP Ff,Q,(x), whereas skew 
Q-functions are defined by QA/,(~)  = CYEoPfjYQv(x) with fju = bib;'b;'F;,. 
Alternatively. QA,,(x) is obtained as b;'D(&(x))QA(x). 
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Schur Q-polynomials QA(x) are related to the Schur Q-functions in the same way that 
Schur polynomials are related to the Schur S-functions. Given x,  = i p , ( u ) ,  definei GA(x) 
to be such that 3 * ( x )  = QA(u). The right-hand side is calculated using the definition (3.2) 
with q&) related to the elementary Schur polynomials by qm(u) = S,(X), since 

Promoting L to a multivariable L = (2,. 2 2 , .  . .) as before, we obtain 

obtained by making the transformation y + -y in (3.3, we obtain the bilinear identity in 
the form 

Now if we define supersymmetric Q-functions to be 

t Actually, we will drop fhe bar from Q for convenience, BS it is clear from the context whether the polynomial 
or the symmetric function is meant. 
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then (3.10) can k written in the more compact form 

P D Jarvis and C M Yung 

r (u)r (v)  = f% hr ( v s D P  $QW~)Q.(~) )  ( p  EDP $D(QM~))Q~( ; ) )  6 r ( u ) r ( v ) .  

The tau function can be written, in all generality, as 

7(u)  = a'Q&). (3.12) 
~ E D P  

Using arguments similar to those used for the KP hierarchy, we obtain from (3.10) the 
condition 

(3.13) 

to be satisfied for all a, ,9 E DP if (3.12) is to solve the BKP hierarchy. Here we have 
d&ned, by analogy, composite Q-functions to be 

dz 
aUab = f - ~ ( - l ) l " ' + ' b ' a ~ a a ' Q ~ ; . ( z ) Q ~ ~ b ( z )  

2H'z s.i 

I b 
Q&,,(z) = ( - I ) ~ ~ I ~ Q ~ ~ ~ ( Z ) Q ~ , ~ ( ; )  . 

EEDP 

@functions of a single variable are simple: QA(z) is non-zero only if A is a one-part 
partition, in which case Q1&) = 2zm if m # 0 and Q(ol(z) = 1. Similarly the skew 
Q-function QA/,(z) is non-zero only if the skew diagram A - f i  is a horizontal strip. in 
which case it is given by 1191 

'(')-'(J')F' z' r = [A[ - Ifil . Ql/,(z) = 2 P ( r )  

The coefficients FL(rl can be calculated thus: if A = (A1.J.2. ..., A.+I) and p = 
(pi, pz, . . . , f in )  where Ai,  pi 0 for i < n then 

A FP (,) = 2p-' 

where p is the number of rows for which Aj > pj, the (n + I)-th row excluded, and q is 
the number of rows for which Aj+l  = Aj.  This allows explicit calculation of the composite 
Q-functions, resulting in the Plucker equations 

a10)at3.2.1) + a"aO,ll - a(2.11a131 - at3,21all) = 0 
a10)a(4.Z.11 + a12)a14,1) - a(2.11a14) - a(4,2)a11) = 0 
a(Olat4,3.11 +a(3)a(4,11 - a13.11a14) -a14,3)all) = o  
a(Ola15.2.11 + a12)a15.1) - a(2.11a(5) - a(5.2)a(1) = 0 
a101a15.3.11 +a(3)a(5.1) - at3.1)a(5) -a(5.3)a(l) = 0 
a10)a16.2.1) + a121a(6,1) - a(2.1)a16) - a16.2)a(11 = 0 

(3.14) 

The equations listed in (3.14) constitute all the non-trivial equations for la1 + < 8. The 
lack of terms (a')' in the Pliicker equations is due to the fact [6,7] that Schur Q-polynomials 
solve the BKP hierarchy, i.e. given A, a' = Se,, is a solution to (3.13). We expect that this 
can be proved along the lines of appendix A--a (as yet unknown) determinantal or Pfaffian 
expression for composite Schur Q-functions being the key ingredient. 
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As with the KP hierarchy in subsection 2.3, we can obtain bilinear PDES in ~ ( x )  
corresponding to these Plucker relations. Consider again a tau function of compound 
argument, which can be expanded as 

r(u. w) = C a u Q a ( u ,  w )  = Ca"Q,/p(U)Qa(w) . 
a %E 

By the same argument as before, aP(u) = Ea a"Qw,p(u) satisfies (3.13). We rewrite aE(u) 
by looking at its generating function in the following way: 

Ca8(u)QpW = C b j ' D  (Q&)) W Q p ( t )  
P 8 

Now let .a/ap,,,(u) = i p , ( y )  for a fictitious set of variables y = ( y ~ .  yz. . . .). Then we 
obtain 

a%) = b;'Q&)r(u) (3.15) 

after using (3.5) and projecting out Q p ( t ) .  In terms of Schur Q-polynomials (3.15) becomes 
aP(u) = b;'Q&)r(u) where 3p (+a/apl(u), ($lap&), . . .). Finally, in terms of the 
original BKP variables x .  we have 

a"@) = b;'QU(28)r(x) (3.16) 

where 8 
the bilinear PDE 

(Q CO, ( 2 3 ) ~  ( x ) )  (Qa.z. I) (28) r ( x ) )  + (Q (21 (28) 5 (XI) (eo, 11 (2% T (XI) 

(+a/axl, ( f a / a x z , .  . .). Corresponding to the first equation of (3.14) we have 

- ( Q w ( ' ~ % ~ ( x ) )  (Qd2%t(x ) )  - ( Q O . Z , ( ~ ~ ) ~ ( X ) )  ( Q d 2 b ( x ) )  = 0 .  

Using the explicit form for Schur Q-polynomials written down earlier, this can be shown 
to be equivalent to the Hirota bilinear form of the BKP equation 

(Dp - 5DiD3 - 5D: + 9D1D5) r . r = 0 .  (3.17) 

The next equation of (3.14) is a total-XI derivative of the BKP equation, consistent with the 
fact that only even degree equations are non-trivial in the BKP hierarchy [4]. The difference 
between the third and fourth equations of (3.14) is equivalent to the second equation of the 
BKP hierarchy 

(0: + 7 @ 4  - 35D:D: -21D;Ds -42D3D5 +90D1&)r.  r = O  

whereas the fifth and sixth combine to produce total derivatives of the first two BKP Hirota 
bilinear equations. Once again, all the bilinear equations corresponding to the Plucker 
equations (3.13) are expected to be equivalent to the BKP Hirota equations. 
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3.3. Soliton and other solutions 

The vertex operator [61 

P D Jarvis and C M Yung 

defines the vertex representation of b, on cC[xl, x3, . . .I which underlies the BW hierarchy. 
Elements of O(m) are obtained by exponentiating elements of bm, and they generate new 
tau function solutions of the BW hierarchy from old ones. Since r(a, b)* is zero, we are 
interested in operators of the type 

for arbitrary scalars ai. bi,ci. 

hierarchy, we obtain 
Via the transformations (3.9), and using manipulations analogous to the ones for the KP 

l%, b)bi'Q&) = (-l)"iCb,'Qir;y(a,b)Qytu) . (3.18) 
Y 

More generally, we have for any n 

(3.19) 

where 

(1 - x z ) ( I  - x w ) ( 1  -yz) ( I  - y w )  
(1 + xz) (1 + x w )  (1 + y d  (1 + yw) ' n x ,  y; 2, w )  = - 

Hence the result of the action of a product of exponentials of r(a, b) on a Schur Q-function 
is 

which are solutions of the BW hierarchy (once the transformations (3.9) are reversed) 
by virtue of the fact that Schur @functions are also solutions. As in the KP case in 
subsection 2.4, when a is the zero partition we recover the known N-soliton solution 161. 
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4. Conclusion 

In this paper, we have studied the KP and BKP hierarchies through their connections with 
symmetric functions. In the process we have re-derived several well known results -e.g. the 
fact that Schur polynomials solve the KP hierarchy, the form of the N-soliton solutions, and 
the relationship between Hirota derivatives and supersymmetric polynomials. We have also 
showed how to obtain the Plucker equations directly from the bilinear identities, a result 
we believe to be new. In a separate paper [I31 it will be shown that symmetric function 
techniques also allow the derivation of closed-form expressions for Hirota polynomials 
of various KP-type hierarchies. There are probably other interesting properties of KP-type 
hierarchies which deserve to be studied from our point of view. To conclude. we note. 
that our discussions of the KP and BKP hierarchies in sections 2 and 3 completely parallel 
each other. Since the S- and Schur Q-functions are but special cases (t  = 0 and t = -1, 
respectively) of the Hall-Littlewood symmetric functions [14], other special cases (e.g. t 
root of unity) might be relevant to other w-type hierarchies. 
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Appendix A. Plucker equations from composite S-functions 

As was shown in section 2 above, for fixed partitions a', p the presence of a term in 
the associated Pliicker equation necessitates non-vanishing composite S-functions se,;~(z) 
and ske,(z) of a single indeterminate z, such that 

(A.1) la1 + IS1 = IC1 + lrll - 1 . 
For a single z these S-functions may be interpreted as characters of representations of gl(1). 
By homogeneity 

( A 4  ~- ( 2 )  = 21W1-lhld. 
h:!J A:@ 

where is the dimension ( = 1 for standard partitions, and 0 or i1 for partitions which 
modify to standard ones). Henceforth we consider only the dimension d::@ and use the 
m x m determinantal expansion [20]: 

where m = max{A~, A', , ~.r I ,  I.;). For gl(l), it can be easily established from the definition 
(2.13) of composite S-functions that 

i f a = O  I' 
otherwise. 

It then follows from (A.4) that, since the sets {hi - i + m], (pj - j + m ]  are strictly 
decreasing and non-negative, precisely one non-zero (= &I) entry per row must occur for 
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any non-vanishing determinant; and, moreover, the non-zero entry for each successive row 
necessarily occurs at least one column to the right of the preceding one. Thus, except for 
the possibility of the last row being completely filled (A; = 0). the matrix must have its 
non-zero entries either on the leading or (upper) next to-to-leading diagonal. In practice 
this means that the columns of A are formed by either (I) adding 1 to the first (r - 1) rows 
of p, deleting p,, and copying the remaining rows of p, for 1 < r < p',; or (U) adding one 
to each row of p, together with k(> 0) additional columns of length 1. The relationship 
between the weights of A and p for these cases is thus 

P D Jarvis and C M rung 

For the Plucker relations arising from fixed a and ,9 the conditions (AS) can be applied 

(-4.6) 

In contrast to the Sat0 form [4], such equations can have arbitrarily many terms, as 
consideration of cases l i e  a' = (s'), p = (4') with r > s. p q will show. For 
example .(A@ with (AS) has eight solutions, and hence the corresponding Plucker relation 
eight terms, for the choice a' = ( Z 6 ) ,  ,9 = (61°) 

by interpreting the coefficient of afav as a non-vanishing product ~ ~ ; ~ , s l i ' ; ~  such that 

It1 + l v l =  I 4  + IS1 + 1. 

- a(79)a(29) + a#6)a(32') - ai7'62)a(322') + a(7W)a(332)  

- aC7'64\aC3') + a(726'1a(3s) - a(768)a(3J1) + a(6>a(3s12) = 0 , 

In order to show that a5 = 8, A is a solution for fixed A, it is only necessary to note 
that the coefficient of (a')' is always zero, whatever a' and p. Using (AS), S ~ , ; A S + + ~ ,  is 
non-zero when one of the following applies: 

a. , - ,  - A . - i  la1 = IAI - 1 -a i  1 < i  < A ;  

(Ib) IaI = IAl+A' ,  + k  k > O  

as) = [AI - 1 - bj bi =A; - j 1 < j  < A I  

(W I S I = I A I + A i + I  I > O  

In the first case the quantity ai + bj + 1 is never zero by Frobenius' lemma [20] which states 
that the sets (ai)  and [bj)  are disjoint (in fact, hij > 0 is the hook length of the node (i. j )  
if it belongs in A; otherwise -hij is the hook length of the node (A', - i + 1, AI  - j + I )  
of the complement A' of A in its AI  x A; rectangle). Thus )a1 + IpI can never attain the 
required 21AI - I .  Case four is obviously ruled out and the second and third cases are also 
greater than the required 2(AI - 1 by the positive amounts (AI - A i )  + i + 1, (A; - A j  + k), 
respectively. 
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Appendix B. Hirota derivatives and supersymmetric Schur S- and &-polynomials 

where DA = DA,DA, ... DA. for any partition A = ( A I , .  ..,A,). This result was first 
obtained in [21, 221 in a different guise based on the observation that a tau function 
solution for the KP hierarchy can be written as a Wmnskian. Our derivation does not 
require this assumption and is thus not tied down to the Kp hierarchy, and also can be 
readily generalized to cases where the Hmta equations involve two tau functions, as for 
the modified KP hierarchies. Furthermore an analogous result is available for BKP-type 
hierarchies. 

To prove (B . l )  we note that Di is like a power sum p ~ ( r ) .  Hence we can think of Dn 
as p.(r)  for a fictitious set of indeterminates r and consider the generating function 

Using the relations Z A z ; ' p A ( t ) p A ( r )  = f l i * j ( l  - firj)-# [14] (which is yet another 
expression for the product on the right-hand side) and (2.8), we can write (B.2) as 
exp(E,, i pn( r )Dn) ( r  . 5) .  By the definition of Hirota derivative, this is the same as 
(exp (C, ip . ( t )&)  r)(exp (- E, :p,,(t)$) T]. By the usual argument of thinking of a. 
as pn(w) (for yet another fictitious set of indeterminates w),  we can rewrite the above as 

s , ( ~ ) M ~ N I  E(- I ) ~ ~ ' ~ ~ ( O ( S ~ ( & ~ I .  
(I B 

On multiplying together the S-functions o f t ,  and using the Frobenius relation (2.21) the 
generating function (B.2) is finally rewritten as 

The result (B.1) follows on comparing coefficients of m ( t )  on both sides and using the 
definition (2.12) of supersymmetric S-functions. Actually, by the Fmbenius relation (221)  
we have the following result 

as well, which 'explains' why Hirota derivatives are intimately related to supersymmetric 
Schur polynomials. 

The analogous expression of (B . l )  for the BKP hierarchy is easily obtained. Here we are 
interested in DA for A E Of, the set of partitions into odd positive integers. The identity 
CAEop z ; ' 2 " " p ~ ( t ) p ~ ( r )  = e x p ( x n  2pn(t)pn(r))  [I41 is used to write the generating 
function 

as exp (xndd ;pn(t)Dn) ( T . T )  which, by the definition of Hirota derivative and the identity 
(3.3,  becomes 
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On using the relation [I41 

P D Jarvis and C M Yung 

between Schur Q-functions and power sums and the definition (3.1 1) of supersymmetric 
Schur Q-functions, we finally obtain the result 
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